MakeItFrom.com
Menu (ESC)

EN 1.8505 Steel vs. EN 1.5402 Steel

Both EN 1.8505 steel and EN 1.5402 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8505 steel and the bottom bar is EN 1.5402 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13
23
Fatigue Strength, MPa 540
260
Impact Strength: V-Notched Charpy, J 28
45
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 630
370
Tensile Strength: Ultimate (UTS), MPa 1050
580
Tensile Strength: Yield (Proof), MPa 860
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
410
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 39
51
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
2.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
1.7
Embodied Energy, MJ/kg 22
22
Embodied Water, L/kg 65
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1950
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 37
21
Strength to Weight: Bending, points 30
20
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 31
17

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0
Carbon (C), % 0.28 to 0.35
0 to 0.18
Chromium (Cr), % 1.5 to 1.8
0
Iron (Fe), % 95.4 to 97.1
97.3 to 98.7
Manganese (Mn), % 0.4 to 0.7
0.9 to 1.4
Molybdenum (Mo), % 0.2 to 0.4
0.4 to 0.6
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0 to 0.035
0 to 0.015
Vanadium (V), % 0
0.040 to 0.080