MakeItFrom.com
Menu (ESC)

EN 1.8505 Steel vs. CC483K Bronze

EN 1.8505 steel belongs to the iron alloys classification, while CC483K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8505 steel and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
97
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13
6.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 1050
310
Tensile Strength: Yield (Proof), MPa 860
170

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 440
170
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 39
68
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
36
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.6
3.8
Embodied Energy, MJ/kg 22
62
Embodied Water, L/kg 65
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
17
Resilience: Unit (Modulus of Resilience), kJ/m3 1950
130
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 37
9.9
Strength to Weight: Bending, points 30
12
Thermal Diffusivity, mm2/s 11
21
Thermal Shock Resistance, points 31
11

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0.28 to 0.35
0
Chromium (Cr), % 1.5 to 1.8
0
Copper (Cu), % 0
85 to 89
Iron (Fe), % 95.4 to 97.1
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0.4 to 0.7
0 to 0.2
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.6
Silicon (Si), % 0 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.035
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0
0 to 0.5