MakeItFrom.com
Menu (ESC)

EN 1.8505 Steel vs. SAE-AISI 1020 Steel

Both EN 1.8505 steel and SAE-AISI 1020 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8505 steel and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 13
17 to 28
Fatigue Strength, MPa 540
180 to 250
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 630
280
Tensile Strength: Ultimate (UTS), MPa 1050
430 to 460
Tensile Strength: Yield (Proof), MPa 860
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 440
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
1.4
Embodied Energy, MJ/kg 22
18
Embodied Water, L/kg 65
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1950
150 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 37
15 to 16
Strength to Weight: Bending, points 30
16 to 17
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 31
13 to 14

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0
Carbon (C), % 0.28 to 0.35
0.18 to 0.23
Chromium (Cr), % 1.5 to 1.8
0
Iron (Fe), % 95.4 to 97.1
99.08 to 99.52
Manganese (Mn), % 0.4 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0 to 0.050