MakeItFrom.com
Menu (ESC)

EN 1.8505 Steel vs. C42500 Brass

EN 1.8505 steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8505 steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13
2.0 to 49
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Shear Strength, MPa 630
220 to 360
Tensile Strength: Ultimate (UTS), MPa 1050
310 to 630
Tensile Strength: Yield (Proof), MPa 860
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 440
180
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1410
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 39
120
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
29

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.6
2.8
Embodied Energy, MJ/kg 22
46
Embodied Water, L/kg 65
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1950
64 to 1570
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 37
9.9 to 20
Strength to Weight: Bending, points 30
12 to 19
Thermal Diffusivity, mm2/s 11
36
Thermal Shock Resistance, points 31
11 to 22

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0
Carbon (C), % 0.28 to 0.35
0
Chromium (Cr), % 1.5 to 1.8
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 95.4 to 97.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.025
0 to 0.35
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5