MakeItFrom.com
Menu (ESC)

EN 1.8505 Steel vs. C51100 Bronze

EN 1.8505 steel belongs to the iron alloys classification, while C51100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8505 steel and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13
2.5 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Shear Strength, MPa 630
230 to 410
Tensile Strength: Ultimate (UTS), MPa 1050
330 to 720
Tensile Strength: Yield (Proof), MPa 860
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 440
190
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 39
84
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
20
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
20

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
32
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
3.0
Embodied Energy, MJ/kg 22
48
Embodied Water, L/kg 65
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1950
38 to 2170
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 37
10 to 22
Strength to Weight: Bending, points 30
12 to 20
Thermal Diffusivity, mm2/s 11
25
Thermal Shock Resistance, points 31
12 to 26

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0
Carbon (C), % 0.28 to 0.35
0
Chromium (Cr), % 1.5 to 1.8
0
Copper (Cu), % 0
93.8 to 96.5
Iron (Fe), % 95.4 to 97.1
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.4 to 0.7
0
Molybdenum (Mo), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.025
0.030 to 0.35
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
3.5 to 4.9
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5