MakeItFrom.com
Menu (ESC)

EN 1.8505 Steel vs. C86800 Bronze

EN 1.8505 steel belongs to the iron alloys classification, while C86800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.8505 steel and the bottom bar is C86800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 13
22
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 1050
570
Tensile Strength: Yield (Proof), MPa 860
260

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 440
140
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
3.0
Embodied Energy, MJ/kg 22
51
Embodied Water, L/kg 65
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1950
310
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 37
20
Strength to Weight: Bending, points 30
19
Thermal Shock Resistance, points 31
18

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0 to 2.0
Carbon (C), % 0.28 to 0.35
0
Chromium (Cr), % 1.5 to 1.8
0
Copper (Cu), % 0
53.5 to 57
Iron (Fe), % 95.4 to 97.1
1.0 to 2.5
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.4 to 0.7
2.5 to 4.0
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0
2.5 to 4.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
28.3 to 40.5
Residuals, % 0
0 to 1.0