MakeItFrom.com
Menu (ESC)

EN 1.8509 Steel vs. C19700 Copper

EN 1.8509 steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8509 steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 11
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 680
240 to 300
Tensile Strength: Ultimate (UTS), MPa 1130
400 to 530
Tensile Strength: Yield (Proof), MPa 940
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 440
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 39
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.6
2.6
Embodied Energy, MJ/kg 22
41
Embodied Water, L/kg 65
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 2340
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 40
12 to 16
Strength to Weight: Bending, points 31
14 to 16
Thermal Diffusivity, mm2/s 10
73
Thermal Shock Resistance, points 33
14 to 19

Alloy Composition

Aluminum (Al), % 0.8 to 1.2
0
Carbon (C), % 0.38 to 0.45
0
Chromium (Cr), % 1.5 to 1.8
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 95.5 to 97.1
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0.4 to 0.7
0 to 0.050
Molybdenum (Mo), % 0.2 to 0.35
0
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.025
0.1 to 0.4
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.035
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2