MakeItFrom.com
Menu (ESC)

EN 1.8515 Steel vs. S66286 Stainless Steel

Both EN 1.8515 steel and S66286 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8515 steel and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
17 to 40
Fatigue Strength, MPa 580
240 to 410
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
75
Shear Strength, MPa 680
420 to 630
Tensile Strength: Ultimate (UTS), MPa 1130
620 to 1020
Tensile Strength: Yield (Proof), MPa 940
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 470
920
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 3.5
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
6.0
Embodied Energy, MJ/kg 22
87
Embodied Water, L/kg 60
170

Common Calculations

PREN (Pitting Resistance) 4.4
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 2310
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 40
22 to 36
Strength to Weight: Bending, points 31
20 to 28
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 33
13 to 22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0.28 to 0.35
0 to 0.080
Chromium (Cr), % 2.8 to 3.3
13.5 to 16
Iron (Fe), % 94.7 to 96.5
49.1 to 59.5
Manganese (Mn), % 0.4 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.3 to 0.5
1.0 to 1.5
Nickel (Ni), % 0 to 0.3
24 to 27
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.035
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5