MakeItFrom.com
Menu (ESC)

EN 1.8516 Steel vs. EN 1.8873 Steel

Both EN 1.8516 steel and EN 1.8873 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8516 steel and the bottom bar is EN 1.8873 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
19
Fatigue Strength, MPa 570
340
Impact Strength: V-Notched Charpy, J 28
67
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 660
410
Tensile Strength: Ultimate (UTS), MPa 1100
660
Tensile Strength: Yield (Proof), MPa 910
490

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 470
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
3.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.8
Embodied Energy, MJ/kg 22
24
Embodied Water, L/kg 61
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2190
650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 39
23
Strength to Weight: Bending, points 30
21
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 32
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.2 to 0.27
0 to 0.18
Chromium (Cr), % 3.0 to 3.5
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 94.6 to 96.1
93.6 to 100
Manganese (Mn), % 0.4 to 0.7
0 to 1.7
Molybdenum (Mo), % 0.5 to 0.7
0 to 0.7
Nickel (Ni), % 0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.035
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15