MakeItFrom.com
Menu (ESC)

EN 1.8516 Steel vs. Nickel 333

EN 1.8516 steel belongs to the iron alloys classification, while nickel 333 belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8516 steel and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11
34
Fatigue Strength, MPa 570
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
81
Shear Strength, MPa 660
420
Tensile Strength: Ultimate (UTS), MPa 1100
630
Tensile Strength: Yield (Proof), MPa 910
270

Thermal Properties

Latent Heat of Fusion, J/g 260
320
Maximum Temperature: Mechanical, °C 470
1010
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 39
11
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.7
8.5
Embodied Energy, MJ/kg 22
120
Embodied Water, L/kg 61
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2190
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 39
21
Strength to Weight: Bending, points 30
19
Thermal Diffusivity, mm2/s 10
2.9
Thermal Shock Resistance, points 32
16

Alloy Composition

Carbon (C), % 0.2 to 0.27
0 to 0.1
Chromium (Cr), % 3.0 to 3.5
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Iron (Fe), % 94.6 to 96.1
9.3 to 24.5
Manganese (Mn), % 0.4 to 0.7
0 to 2.0
Molybdenum (Mo), % 0.5 to 0.7
2.5 to 4.0
Nickel (Ni), % 0
44 to 48
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.5
Sulfur (S), % 0 to 0.035
0 to 0.030
Tungsten (W), % 0
2.5 to 4.0