MakeItFrom.com
Menu (ESC)

EN 1.8823 Steel vs. N08320 Stainless Steel

Both EN 1.8823 steel and N08320 stainless steel are iron alloys. They have 47% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8823 steel and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
40
Fatigue Strength, MPa 270
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 340
400
Tensile Strength: Ultimate (UTS), MPa 530
580
Tensile Strength: Yield (Proof), MPa 360
220

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 47
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
28
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.6
4.9
Embodied Energy, MJ/kg 22
69
Embodied Water, L/kg 49
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 360
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 13
3.3
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0.015 to 0.034
0
Carbon (C), % 0 to 0.16
0 to 0.050
Chromium (Cr), % 0 to 0.35
21 to 23
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 95.6 to 99.985
40.4 to 50
Manganese (Mn), % 0 to 1.7
0 to 2.5
Molybdenum (Mo), % 0 to 0.13
0
Nickel (Ni), % 0 to 0.55
25 to 27
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.017
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.12
0