MakeItFrom.com
Menu (ESC)

EN 1.8835 Steel vs. AISI 310 Stainless Steel

Both EN 1.8835 steel and AISI 310 stainless steel are iron alloys. They have 54% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8835 steel and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
34 to 45
Fatigue Strength, MPa 310
240 to 280
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
78
Shear Strength, MPa 360
420 to 470
Tensile Strength: Ultimate (UTS), MPa 580
600 to 710
Tensile Strength: Yield (Proof), MPa 440
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1040
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
25
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
4.3
Embodied Energy, MJ/kg 21
61
Embodied Water, L/kg 48
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 510
170 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
21 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 13
3.9
Thermal Shock Resistance, points 17
14 to 17

Alloy Composition

Aluminum (Al), % 0.020 to 0.040
0
Carbon (C), % 0 to 0.16
0 to 0.25
Chromium (Cr), % 0
24 to 26
Iron (Fe), % 96.7 to 99.98
48.2 to 57
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.5
19 to 22
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0 to 0.0080
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.1
0