MakeItFrom.com
Menu (ESC)

EN 1.8836 Steel vs. S35500 Stainless Steel

Both EN 1.8836 steel and S35500 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8836 steel and the bottom bar is S35500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
14
Fatigue Strength, MPa 290
690 to 730
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 360
810 to 910
Tensile Strength: Ultimate (UTS), MPa 570
1330 to 1490
Tensile Strength: Yield (Proof), MPa 410
1200 to 1280

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
870
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 44
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.5
Embodied Energy, MJ/kg 23
47
Embodied Water, L/kg 50
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 450
3610 to 4100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
47 to 53
Strength to Weight: Bending, points 19
34 to 37
Thermal Diffusivity, mm2/s 12
4.4
Thermal Shock Resistance, points 17
44 to 49

Alloy Composition

Aluminum (Al), % 0.015 to 0.054
0
Carbon (C), % 0 to 0.18
0.1 to 0.15
Chromium (Cr), % 0 to 0.35
15 to 16
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 95.1 to 99.985
73.2 to 77.7
Manganese (Mn), % 0 to 1.8
0.5 to 1.3
Molybdenum (Mo), % 0 to 0.23
2.5 to 3.2
Nickel (Ni), % 0 to 0.85
4.0 to 5.0
Niobium (Nb), % 0 to 0.060
0.1 to 0.5
Nitrogen (N), % 0 to 0.027
0.070 to 0.13
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.14
0