MakeItFrom.com
Menu (ESC)

EN 1.8838 Steel vs. S20910 Stainless Steel

Both EN 1.8838 steel and S20910 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8838 steel and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
14 to 39
Fatigue Strength, MPa 290
310 to 460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 380
500 to 570
Tensile Strength: Ultimate (UTS), MPa 610
780 to 940
Tensile Strength: Yield (Proof), MPa 430
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1080
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 44
13
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
22
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
4.8
Embodied Energy, MJ/kg 23
68
Embodied Water, L/kg 50
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 500
460 to 1640
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
28 to 33
Strength to Weight: Bending, points 20
24 to 27
Thermal Diffusivity, mm2/s 12
3.6
Thermal Shock Resistance, points 18
17 to 21

Alloy Composition

Aluminum (Al), % 0.015 to 0.054
0
Carbon (C), % 0 to 0.18
0 to 0.060
Chromium (Cr), % 0 to 0.35
20.5 to 23.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 95 to 99.985
52.1 to 62.1
Manganese (Mn), % 0 to 1.8
4.0 to 6.0
Molybdenum (Mo), % 0 to 0.23
1.5 to 3.0
Nickel (Ni), % 0 to 0.85
11.5 to 13.5
Niobium (Nb), % 0 to 0.060
0.1 to 0.3
Nitrogen (N), % 0 to 0.027
0.2 to 0.4
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.65
0 to 0.75
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.14
0.1 to 0.3