MakeItFrom.com
Menu (ESC)

EN 1.8838 Steel vs. S31803 Stainless Steel

Both EN 1.8838 steel and S31803 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8838 steel and the bottom bar is S31803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
29
Fatigue Strength, MPa 290
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 380
460
Tensile Strength: Ultimate (UTS), MPa 610
710
Tensile Strength: Yield (Proof), MPa 430
500

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1060
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 44
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
17
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.6
Embodied Energy, MJ/kg 23
49
Embodied Water, L/kg 50
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 500
630
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 12
4.3
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 0.015 to 0.054
0
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 0 to 0.35
21 to 23
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 95 to 99.985
63.7 to 71.9
Manganese (Mn), % 0 to 1.8
0 to 2.0
Molybdenum (Mo), % 0 to 0.23
2.5 to 3.5
Nickel (Ni), % 0 to 0.85
4.5 to 6.5
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.027
0.080 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.65
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0 to 0.14
0