MakeItFrom.com
Menu (ESC)

EN 1.8865 Steel vs. ACI-ASTM CE3MN Steel

Both EN 1.8865 steel and ACI-ASTM CE3MN steel are iron alloys. They have 65% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8865 steel and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
20
Fatigue Strength, MPa 340
380
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Tensile Strength: Ultimate (UTS), MPa 660
770
Tensile Strength: Yield (Proof), MPa 500
590

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
21
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
4.2
Embodied Energy, MJ/kg 24
58
Embodied Water, L/kg 52
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 670
840
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
27
Strength to Weight: Bending, points 21
24
Thermal Diffusivity, mm2/s 10
4.1
Thermal Shock Resistance, points 19
21

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 0 to 1.0
24 to 26
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
58.1 to 65.9
Manganese (Mn), % 0 to 1.7
0 to 1.5
Molybdenum (Mo), % 0 to 0.7
4.0 to 5.0
Nickel (Ni), % 0 to 1.5
6.0 to 8.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0.1 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.040
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0