MakeItFrom.com
Menu (ESC)

EN 1.8865 Steel vs. AISI 440A Stainless Steel

Both EN 1.8865 steel and AISI 440A stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8865 steel and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
5.0 to 20
Fatigue Strength, MPa 340
270 to 790
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 410
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 660
730 to 1790
Tensile Strength: Yield (Proof), MPa 500
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 420
760
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
23
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.8
2.2
Embodied Energy, MJ/kg 24
31
Embodied Water, L/kg 52
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
87 to 120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
26 to 65
Strength to Weight: Bending, points 21
23 to 43
Thermal Diffusivity, mm2/s 10
6.2
Thermal Shock Resistance, points 19
26 to 65

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.6 to 0.75
Chromium (Cr), % 0 to 1.0
16 to 18
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
78.4 to 83.4
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0 to 0.75
Nickel (Ni), % 0 to 1.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0