MakeItFrom.com
Menu (ESC)

EN 1.8865 Steel vs. EN 1.4404 Stainless Steel

Both EN 1.8865 steel and EN 1.4404 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8865 steel and the bottom bar is EN 1.4404 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
14 to 43
Fatigue Strength, MPa 340
220 to 320
Impact Strength: V-Notched Charpy, J 110
91 to 93
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 410
420 to 550
Tensile Strength: Ultimate (UTS), MPa 660
600 to 900
Tensile Strength: Yield (Proof), MPa 500
240 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 420
950
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.8
3.8
Embodied Energy, MJ/kg 24
52
Embodied Water, L/kg 52
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 670
140 to 800
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
21 to 32
Strength to Weight: Bending, points 21
20 to 26
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 19
13 to 20

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 0 to 1.0
16.5 to 18.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
62.8 to 71.5
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
2.0 to 2.5
Nickel (Ni), % 0 to 1.5
10 to 13
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0 to 0.1
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0