MakeItFrom.com
Menu (ESC)

EN 1.8867 Steel vs. 295.0 Aluminum

EN 1.8867 steel belongs to the iron alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8867 steel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
60 to 93
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 25
2.0 to 7.2
Fatigue Strength, MPa 260
44 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 350
180 to 230
Tensile Strength: Ultimate (UTS), MPa 540
230 to 280
Tensile Strength: Yield (Proof), MPa 360
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 48
140
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.6
7.9
Embodied Energy, MJ/kg 21
150
Embodied Water, L/kg 48
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 340
77 to 340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 19
21 to 26
Strength to Weight: Bending, points 19
27 to 32
Thermal Diffusivity, mm2/s 13
54
Thermal Shock Resistance, points 16
9.8 to 12

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.3
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.16
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
4.0 to 5.0
Iron (Fe), % 96.3 to 100
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0.7 to 1.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.030
0 to 0.25
Vanadium (V), % 0 to 0.060
0
Zinc (Zn), % 0
0 to 0.35
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.15