MakeItFrom.com
Menu (ESC)

EN 1.8868 Steel vs. AISI 410Cb Stainless Steel

Both EN 1.8868 steel and AISI 410Cb stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8868 steel and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
15
Fatigue Strength, MPa 260
180 to 460
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 350
340 to 590
Tensile Strength: Ultimate (UTS), MPa 540
550 to 960
Tensile Strength: Yield (Proof), MPa 350
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
730
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
27
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
7.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.6
2.0
Embodied Energy, MJ/kg 21
29
Embodied Water, L/kg 48
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 330
240 to 1600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
20 to 35
Strength to Weight: Bending, points 19
19 to 28
Thermal Diffusivity, mm2/s 13
7.3
Thermal Shock Resistance, points 16
20 to 35

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.16
0 to 0.18
Chromium (Cr), % 0 to 0.3
11 to 13
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.4 to 100
84.5 to 89
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.050
0.050 to 0.3
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.060
0
Zirconium (Zr), % 0 to 0.050
0