MakeItFrom.com
Menu (ESC)

EN 1.8869 Steel vs. 384.0 Aluminum

EN 1.8869 steel belongs to the iron alloys classification, while 384.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8869 steel and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
85
Elastic (Young's, Tensile) Modulus, GPa 190
74
Elongation at Break, % 25
2.5
Fatigue Strength, MPa 260
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
28
Shear Strength, MPa 350
200
Tensile Strength: Ultimate (UTS), MPa 540
330
Tensile Strength: Yield (Proof), MPa 360
170

Thermal Properties

Latent Heat of Fusion, J/g 250
550
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1460
580
Melting Onset (Solidus), °C 1420
530
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 48
96
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
69

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
11
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 1.6
7.4
Embodied Energy, MJ/kg 21
140
Embodied Water, L/kg 48
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 340
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
37
Thermal Diffusivity, mm2/s 13
39
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
77.3 to 86.5
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.16
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
3.0 to 4.5
Iron (Fe), % 96.4 to 100
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
10.5 to 12
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.35
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.060
0
Zinc (Zn), % 0
0 to 3.0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.5