MakeItFrom.com
Menu (ESC)

EN 1.8869 Steel vs. AISI 301LN Stainless Steel

Both EN 1.8869 steel and AISI 301LN stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8869 steel and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
23 to 51
Fatigue Strength, MPa 260
270 to 520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 350
450 to 670
Tensile Strength: Ultimate (UTS), MPa 540
630 to 1060
Tensile Strength: Yield (Proof), MPa 360
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
890
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.7
Embodied Energy, MJ/kg 21
39
Embodied Water, L/kg 48
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 340
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 19
22 to 38
Strength to Weight: Bending, points 19
21 to 30
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 16
14 to 24

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.16
0 to 0.030
Chromium (Cr), % 0 to 0.3
16 to 18
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.4 to 100
70.7 to 77.9
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0.070 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.060
0
Zirconium (Zr), % 0 to 0.050
0