EN 1.8869 Steel vs. ASTM Grade HL Steel
Both EN 1.8869 steel and ASTM grade HL steel are iron alloys. They have 49% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.
For each property being compared, the top bar is EN 1.8869 steel and the bottom bar is ASTM grade HL steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 160 | |
150 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
200 |
Elongation at Break, % | 25 | |
11 |
Fatigue Strength, MPa | 260 | |
150 |
Poisson's Ratio | 0.29 | |
0.27 |
Shear Modulus, GPa | 73 | |
80 |
Tensile Strength: Ultimate (UTS), MPa | 540 | |
500 |
Tensile Strength: Yield (Proof), MPa | 360 | |
270 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
320 |
Maximum Temperature: Mechanical, °C | 410 | |
1100 |
Melting Completion (Liquidus), °C | 1460 | |
1390 |
Melting Onset (Solidus), °C | 1420 | |
1340 |
Specific Heat Capacity, J/kg-K | 470 | |
490 |
Thermal Expansion, µm/m-K | 13 | |
17 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.4 | |
27 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.6 | |
4.5 |
Embodied Energy, MJ/kg | 21 | |
65 |
Embodied Water, L/kg | 48 | |
210 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 120 | |
48 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 340 | |
180 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 24 | |
25 |
Strength to Weight: Axial, points | 19 | |
18 |
Strength to Weight: Bending, points | 19 | |
18 |
Thermal Shock Resistance, points | 16 | |
11 |
Alloy Composition
Boron (B), % | 0 to 0.0050 | |
0 |
Carbon (C), % | 0 to 0.16 | |
0.2 to 0.6 |
Chromium (Cr), % | 0 to 0.3 | |
28 to 32 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Iron (Fe), % | 96.4 to 100 | |
40.8 to 53.8 |
Manganese (Mn), % | 0 to 1.5 | |
0 to 2.0 |
Molybdenum (Mo), % | 0 to 0.25 | |
0 to 0.5 |
Nickel (Ni), % | 0 to 0.5 | |
18 to 22 |
Niobium (Nb), % | 0 to 0.050 | |
0 |
Nitrogen (N), % | 0 to 0.015 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.4 | |
0 to 2.0 |
Sulfur (S), % | 0 to 0.0050 | |
0 to 0.040 |
Titanium (Ti), % | 0 to 0.030 | |
0 |
Vanadium (V), % | 0 to 0.060 | |
0 |
Zirconium (Zr), % | 0 to 0.050 | |
0 |