MakeItFrom.com
Menu (ESC)

EN 1.8869 Steel vs. ASTM Grade LC2-1 Steel

Both EN 1.8869 steel and ASTM grade LC2-1 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8869 steel and the bottom bar is ASTM grade LC2-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
20
Fatigue Strength, MPa 260
430
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 540
810
Tensile Strength: Yield (Proof), MPa 360
630

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 410
450
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
46
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
5.0
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.6
1.9
Embodied Energy, MJ/kg 21
25
Embodied Water, L/kg 48
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 340
1040
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
29
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 16
24

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.16
0 to 0.22
Chromium (Cr), % 0 to 0.3
1.4 to 1.9
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.4 to 100
92.5 to 95.3
Manganese (Mn), % 0 to 1.5
0.55 to 0.75
Molybdenum (Mo), % 0 to 0.25
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
2.5 to 3.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.045
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.060
0
Zirconium (Zr), % 0 to 0.050
0