MakeItFrom.com
Menu (ESC)

EN 1.8869 Steel vs. AWS ER90S-B3

Both EN 1.8869 steel and AWS ER90S-B3 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.8869 steel and the bottom bar is AWS ER90S-B3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
19
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 540
690
Tensile Strength: Yield (Proof), MPa 360
620

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.4
4.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.6
1.8
Embodied Energy, MJ/kg 21
24
Embodied Water, L/kg 48
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 340
1000
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 16
20

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.16
0.070 to 0.12
Chromium (Cr), % 0 to 0.3
2.3 to 2.7
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 96.4 to 100
93.5 to 95.9
Manganese (Mn), % 0 to 1.5
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.25
0.9 to 1.2
Nickel (Ni), % 0 to 0.5
0 to 0.2
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.4
0.4 to 0.7
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.060
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 0.5