MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. 7021 Aluminum

EN 1.8870 steel belongs to the iron alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 21
9.4
Fatigue Strength, MPa 310
150
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
26
Shear Strength, MPa 380
270
Tensile Strength: Ultimate (UTS), MPa 610
460
Tensile Strength: Yield (Proof), MPa 450
390

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 410
200
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 39
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 1.7
8.3
Embodied Energy, MJ/kg 22
150
Embodied Water, L/kg 50
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
41
Resilience: Unit (Modulus of Resilience), kJ/m3 530
1110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 22
44
Strength to Weight: Bending, points 20
45
Thermal Diffusivity, mm2/s 10
59
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 0
90.7 to 93.7
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 0 to 0.5
0 to 0.050
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 95.1 to 100
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.7
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.030
0 to 0.1
Vanadium (V), % 0 to 0.080
0
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0 to 0.050
0.080 to 0.18
Residuals, % 0
0 to 0.15