MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. ACI-ASTM CB7Cu-2 Steel

Both EN 1.8870 steel and ACI-ASTM CB7Cu-2 steel are iron alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
300 to 420
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
5.7 to 11
Fatigue Strength, MPa 310
420 to 590
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Tensile Strength: Ultimate (UTS), MPa 610
960 to 1350
Tensile Strength: Yield (Proof), MPa 450
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 22
38
Embodied Water, L/kg 50
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 530
1510 to 3600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
34 to 48
Strength to Weight: Bending, points 20
28 to 35
Thermal Diffusivity, mm2/s 10
4.6
Thermal Shock Resistance, points 18
32 to 45

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.070
Chromium (Cr), % 0 to 0.5
14 to 15.5
Copper (Cu), % 0 to 0.3
2.5 to 3.2
Iron (Fe), % 95.1 to 100
73.6 to 79
Manganese (Mn), % 0 to 1.7
0 to 0.7
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
4.5 to 5.5
Niobium (Nb), % 0 to 0.050
0 to 0.35
Nitrogen (N), % 0 to 0.015
0 to 0.050
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0