MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. AISI 303 Stainless Steel

Both EN 1.8870 steel and AISI 303 stainless steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
40 to 51
Fatigue Strength, MPa 310
230 to 360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 380
430 to 470
Tensile Strength: Ultimate (UTS), MPa 610
600 to 690
Tensile Strength: Yield (Proof), MPa 450
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
930
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
15
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.0
Embodied Energy, MJ/kg 22
42
Embodied Water, L/kg 50
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
240
Resilience: Unit (Modulus of Resilience), kJ/m3 530
140 to 440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
21 to 25
Strength to Weight: Bending, points 20
20 to 22
Thermal Diffusivity, mm2/s 10
4.4
Thermal Shock Resistance, points 18
13 to 15

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.15
Chromium (Cr), % 0 to 0.5
17 to 19
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
67.3 to 74.9
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
8.0 to 10
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.2
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0.15 to 0.35
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0