MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. EN 1.4618 Stainless Steel

Both EN 1.8870 steel and EN 1.4618 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
51
Fatigue Strength, MPa 310
240 to 250
Impact Strength: V-Notched Charpy, J 67
90 to 91
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 380
480 to 500
Tensile Strength: Ultimate (UTS), MPa 610
680 to 700
Tensile Strength: Yield (Proof), MPa 450
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 410
900
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 22
39
Embodied Water, L/kg 50
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 530
160 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
24 to 25
Strength to Weight: Bending, points 20
22 to 23
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 18
15 to 16

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.1
Chromium (Cr), % 0 to 0.5
16.5 to 18.5
Copper (Cu), % 0 to 0.3
1.0 to 2.5
Iron (Fe), % 95.1 to 100
62.7 to 72.5
Manganese (Mn), % 0 to 1.7
5.5 to 9.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
4.5 to 5.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0 to 0.15
Phosphorus (P), % 0 to 0.025
0 to 0.070
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0