MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. EN 1.4857 Stainless Steel

Both EN 1.8870 steel and EN 1.4857 stainless steel are iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is EN 1.4857 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
150
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
6.7
Fatigue Strength, MPa 310
120
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Tensile Strength: Ultimate (UTS), MPa 610
500
Tensile Strength: Yield (Proof), MPa 450
250

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1370
Melting Onset (Solidus), °C 1420
1320
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
34
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
5.7
Embodied Energy, MJ/kg 22
81
Embodied Water, L/kg 50
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
28
Resilience: Unit (Modulus of Resilience), kJ/m3 530
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 10
3.4
Thermal Shock Resistance, points 18
11

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.3 to 0.5
Chromium (Cr), % 0 to 0.5
24 to 27
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
31.4 to 41.7
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 1.0
33 to 36
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
1.0 to 2.5
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0