MakeItFrom.com
Menu (ESC)

EN 1.8870 Steel vs. EN 1.8509 Steel

Both EN 1.8870 steel and EN 1.8509 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8870 steel and the bottom bar is EN 1.8509 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
340
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
11
Fatigue Strength, MPa 310
580
Impact Strength: V-Notched Charpy, J 67
29
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 380
680
Tensile Strength: Ultimate (UTS), MPa 610
1130
Tensile Strength: Yield (Proof), MPa 450
940

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
440
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
2.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.6
Embodied Energy, MJ/kg 22
22
Embodied Water, L/kg 50
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 530
2340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
40
Strength to Weight: Bending, points 20
31
Thermal Diffusivity, mm2/s 10
10
Thermal Shock Resistance, points 18
33

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.2
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.38 to 0.45
Chromium (Cr), % 0 to 0.5
1.5 to 1.8
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
95.5 to 97.1
Manganese (Mn), % 0 to 1.7
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.5
0.2 to 0.35
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0