MakeItFrom.com
Menu (ESC)

EN 1.8871 Steel vs. ASTM A232 Spring Steel

Both EN 1.8871 steel and ASTM A232 spring steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8871 steel and the bottom bar is ASTM A232 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
540
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
14
Fatigue Strength, MPa 320
1040
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 380
1090
Tensile Strength: Ultimate (UTS), MPa 610
1790
Tensile Strength: Yield (Proof), MPa 460
1610

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
2.3
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.0
Embodied Energy, MJ/kg 22
28
Embodied Water, L/kg 50
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
64
Strength to Weight: Bending, points 20
42
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 18
53

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.48 to 0.53
Chromium (Cr), % 0 to 0.5
0.8 to 1.1
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
96.8 to 97.7
Manganese (Mn), % 0 to 1.7
0.7 to 0.9
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0.15 to 0.3
Zirconium (Zr), % 0 to 0.050
0