MakeItFrom.com
Menu (ESC)

EN 1.8871 Steel vs. ASTM A369 Grade FP91

Both EN 1.8871 steel and ASTM A369 grade FP91 are iron alloys. They have a moderately high 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8871 steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
19
Fatigue Strength, MPa 320
320
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 380
410
Tensile Strength: Ultimate (UTS), MPa 610
670
Tensile Strength: Yield (Proof), MPa 460
460

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 410
600
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
26
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 22
37
Embodied Water, L/kg 50
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 10
6.9
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.080 to 0.12
Chromium (Cr), % 0 to 0.5
8.0 to 9.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
87.3 to 90.3
Manganese (Mn), % 0 to 1.7
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.5
0.85 to 1.1
Nickel (Ni), % 0 to 1.0
0 to 0.4
Niobium (Nb), % 0 to 0.050
0.060 to 0.1
Nitrogen (N), % 0 to 0.015
0.030 to 0.070
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0.2 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.030
0 to 0.010
Vanadium (V), % 0 to 0.080
0.18 to 0.25
Zirconium (Zr), % 0 to 0.050
0 to 0.010