MakeItFrom.com
Menu (ESC)

EN 1.8871 Steel vs. EN 1.5502 Steel

Both EN 1.8871 steel and EN 1.5502 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8871 steel and the bottom bar is EN 1.5502 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
12 to 20
Fatigue Strength, MPa 320
190 to 290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 380
280 to 330
Tensile Strength: Ultimate (UTS), MPa 610
400 to 1380
Tensile Strength: Yield (Proof), MPa 460
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 22
19
Embodied Water, L/kg 50
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
41 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 550
200 to 520
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
14 to 49
Strength to Weight: Bending, points 20
15 to 35
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 18
12 to 40

Alloy Composition

Boron (B), % 0 to 0.0050
0.00080 to 0.0050
Carbon (C), % 0 to 0.18
0.15 to 0.2
Chromium (Cr), % 0 to 0.5
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 95.1 to 100
98 to 99.249
Manganese (Mn), % 0 to 1.7
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.010
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0