MakeItFrom.com
Menu (ESC)

EN 1.8871 Steel vs. SAE-AISI 1026 Steel

Both EN 1.8871 steel and SAE-AISI 1026 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8871 steel and the bottom bar is SAE-AISI 1026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
17 to 27
Fatigue Strength, MPa 320
200 to 310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 380
320 to 340
Tensile Strength: Ultimate (UTS), MPa 610
500 to 550
Tensile Strength: Yield (Proof), MPa 460
270 to 470

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 410
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
52
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.4
Embodied Energy, MJ/kg 22
18
Embodied Water, L/kg 50
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
200 to 580
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
18 to 20
Strength to Weight: Bending, points 20
18 to 19
Thermal Diffusivity, mm2/s 10
14
Thermal Shock Resistance, points 18
16 to 18

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.22 to 0.28
Chromium (Cr), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
98.7 to 99.18
Manganese (Mn), % 0 to 1.7
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0