MakeItFrom.com
Menu (ESC)

EN 1.8871 Steel vs. S31260 Stainless Steel

Both EN 1.8871 steel and S31260 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8871 steel and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
23
Fatigue Strength, MPa 320
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 380
500
Tensile Strength: Ultimate (UTS), MPa 610
790
Tensile Strength: Yield (Proof), MPa 460
540

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 410
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
20
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.9
Embodied Energy, MJ/kg 22
53
Embodied Water, L/kg 50
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
160
Resilience: Unit (Modulus of Resilience), kJ/m3 550
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
28
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 10
4.3
Thermal Shock Resistance, points 18
22

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 0 to 0.5
24 to 26
Copper (Cu), % 0 to 0.3
0.2 to 0.8
Iron (Fe), % 95.1 to 100
59.6 to 67.6
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
2.5 to 3.5
Nickel (Ni), % 0 to 1.0
5.5 to 7.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0.1 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Tungsten (W), % 0
0.1 to 0.5
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0