MakeItFrom.com
Menu (ESC)

EN 1.8872 Steel vs. EN 1.4571 Stainless Steel

Both EN 1.8872 steel and EN 1.4571 stainless steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.8872 steel and the bottom bar is EN 1.4571 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
14 to 40
Fatigue Strength, MPa 310
200 to 330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 380
410 to 550
Tensile Strength: Ultimate (UTS), MPa 610
600 to 900
Tensile Strength: Yield (Proof), MPa 450
230 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 410
950
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.7
3.9
Embodied Energy, MJ/kg 22
54
Embodied Water, L/kg 50
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 530
130 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22
21 to 32
Strength to Weight: Bending, points 20
20 to 26
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 18
13 to 20

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.080
Chromium (Cr), % 0 to 0.5
16.5 to 18.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 95.1 to 100
61.7 to 71
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.0 to 2.5
Nickel (Ni), % 0 to 1.0
10.5 to 13.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.015
Titanium (Ti), % 0 to 0.030
0 to 0.7
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.050
0