MakeItFrom.com
Menu (ESC)

EN 1.8873 Steel vs. AWS E320

Both EN 1.8873 steel and AWS E320 are iron alloys. They have 41% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is EN 1.8873 steel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 660
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 13
14

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
38
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.8
6.5
Embodied Energy, MJ/kg 24
91
Embodied Water, L/kg 52
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
21
Strength to Weight: Bending, points 21
20
Thermal Shock Resistance, points 19
16

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.070
Chromium (Cr), % 0 to 1.0
19 to 21
Copper (Cu), % 0 to 0.3
3.0 to 4.0
Iron (Fe), % 93.6 to 100
31.8 to 43.5
Manganese (Mn), % 0 to 1.7
0.5 to 2.5
Molybdenum (Mo), % 0 to 0.7
2.0 to 3.0
Nickel (Ni), % 0 to 1.5
32 to 36
Niobium (Nb), % 0 to 0.050
0 to 1.0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0