MakeItFrom.com
Menu (ESC)

EN 1.8873 Steel vs. N06985 Nickel

EN 1.8873 steel belongs to the iron alloys classification, while N06985 nickel belongs to the nickel alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.8873 steel and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 19
45
Fatigue Strength, MPa 340
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Shear Strength, MPa 410
480
Tensile Strength: Ultimate (UTS), MPa 660
690
Tensile Strength: Yield (Proof), MPa 490
260

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 420
990
Melting Completion (Liquidus), °C 1460
1350
Melting Onset (Solidus), °C 1420
1260
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 39
10
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
55
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 1.8
8.8
Embodied Energy, MJ/kg 24
120
Embodied Water, L/kg 52
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 650
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 10
2.6
Thermal Shock Resistance, points 19
16

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.015
Chromium (Cr), % 0 to 1.0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0 to 0.3
1.5 to 2.5
Iron (Fe), % 93.6 to 100
18 to 21
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
6.0 to 8.0
Nickel (Ni), % 0 to 1.5
35.9 to 53.5
Niobium (Nb), % 0 to 0.050
0 to 0.5
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0 to 1.5
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0