MakeItFrom.com
Menu (ESC)

EN 1.8873 Steel vs. S35125 Stainless Steel

Both EN 1.8873 steel and S35125 stainless steel are iron alloys. They have 44% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8873 steel and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
39
Fatigue Strength, MPa 340
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 410
370
Tensile Strength: Ultimate (UTS), MPa 660
540
Tensile Strength: Yield (Proof), MPa 490
230

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
36
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.8
6.4
Embodied Energy, MJ/kg 24
89
Embodied Water, L/kg 52
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 650
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 10
3.1
Thermal Shock Resistance, points 19
12

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.1
Chromium (Cr), % 0 to 1.0
20 to 23
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
36.2 to 45.8
Manganese (Mn), % 0 to 1.7
1.0 to 1.5
Molybdenum (Mo), % 0 to 0.7
2.0 to 3.0
Nickel (Ni), % 0 to 1.5
31 to 35
Niobium (Nb), % 0 to 0.050
0.25 to 0.6
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0