MakeItFrom.com
Menu (ESC)

EN 1.8874 Steel vs. 6070 Aluminum

EN 1.8874 steel belongs to the iron alloys classification, while 6070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8874 steel and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 19
5.6 to 8.6
Fatigue Strength, MPa 340
95 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 410
220 to 240
Tensile Strength: Ultimate (UTS), MPa 660
370 to 380
Tensile Strength: Yield (Proof), MPa 500
350

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 420
160
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 39
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
41
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.8
8.3
Embodied Energy, MJ/kg 24
150
Embodied Water, L/kg 52
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 670
880 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 23
38
Strength to Weight: Bending, points 21
42 to 43
Thermal Diffusivity, mm2/s 10
65
Thermal Shock Resistance, points 19
16 to 17

Alloy Composition

Aluminum (Al), % 0
94.6 to 98
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 0 to 1.0
0 to 0.1
Copper (Cu), % 0 to 0.3
0.15 to 0.4
Iron (Fe), % 93.6 to 100
0 to 0.5
Magnesium (Mg), % 0
0.5 to 1.2
Manganese (Mn), % 0 to 1.7
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 1.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.6
1.0 to 1.7
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.050
0 to 0.15
Vanadium (V), % 0 to 0.080
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.15