MakeItFrom.com
Menu (ESC)

EN 1.8874 Steel vs. AISI 409 Stainless Steel

Both EN 1.8874 steel and AISI 409 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8874 steel and the bottom bar is AISI 409 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
24
Fatigue Strength, MPa 340
140
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 410
270
Tensile Strength: Ultimate (UTS), MPa 660
420
Tensile Strength: Yield (Proof), MPa 500
200

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 420
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
25
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
6.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.8
2.0
Embodied Energy, MJ/kg 24
28
Embodied Water, L/kg 52
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
83
Resilience: Unit (Modulus of Resilience), kJ/m3 670
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
15
Strength to Weight: Bending, points 21
16
Thermal Diffusivity, mm2/s 10
6.7
Thermal Shock Resistance, points 19
15

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.080
Chromium (Cr), % 0 to 1.0
10.5 to 11.7
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
84.9 to 89.5
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 1.5
0 to 0.5
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.050
0 to 0.75
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0