MakeItFrom.com
Menu (ESC)

EN 1.8874 Steel vs. EN 1.6511 Steel

Both EN 1.8874 steel and EN 1.6511 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 99% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8874 steel and the bottom bar is EN 1.6511 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
300
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 19
12
Fatigue Strength, MPa 340
480
Impact Strength: V-Notched Charpy, J 68
37
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 410
600
Tensile Strength: Ultimate (UTS), MPa 660
990
Tensile Strength: Yield (Proof), MPa 500
770

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 420
430
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
36
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
3.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
1.6
Embodied Energy, MJ/kg 24
21
Embodied Water, L/kg 52
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 670
1590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 23
35
Strength to Weight: Bending, points 21
28
Thermal Diffusivity, mm2/s 10
9.9
Thermal Shock Resistance, points 19
29

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0.32 to 0.4
Chromium (Cr), % 0 to 1.0
0.9 to 1.2
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
95.6 to 97.2
Manganese (Mn), % 0 to 1.7
0.5 to 0.8
Molybdenum (Mo), % 0 to 0.7
0.15 to 0.3
Nickel (Ni), % 0 to 1.5
0.9 to 1.2
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.010
0 to 0.035
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0