MakeItFrom.com
Menu (ESC)

EN 1.8875 Steel vs. AISI 303 Stainless Steel

Both EN 1.8875 steel and AISI 303 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.8875 steel and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
40 to 51
Fatigue Strength, MPa 340
230 to 360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 410
430 to 470
Tensile Strength: Ultimate (UTS), MPa 660
600 to 690
Tensile Strength: Yield (Proof), MPa 490
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 420
930
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
15
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
3.0
Embodied Energy, MJ/kg 24
42
Embodied Water, L/kg 52
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 650
140 to 440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
21 to 25
Strength to Weight: Bending, points 21
20 to 22
Thermal Diffusivity, mm2/s 10
4.4
Thermal Shock Resistance, points 19
13 to 15

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.15
Chromium (Cr), % 0 to 1.0
17 to 19
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
67.3 to 74.9
Manganese (Mn), % 0 to 1.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 1.5
8.0 to 10
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.2
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0080
0.15 to 0.35
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0