EN 1.8875 Steel vs. EN 1.1165 Cast Steel
Both EN 1.8875 steel and EN 1.1165 cast steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is EN 1.8875 steel and the bottom bar is EN 1.1165 cast steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 19 | |
11 to 20 |
Fatigue Strength, MPa | 340 | |
200 to 380 |
Impact Strength: V-Notched Charpy, J | 90 | |
31 to 40 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 660 | |
600 to 780 |
Tensile Strength: Yield (Proof), MPa | 490 | |
290 to 620 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 420 | |
400 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 39 | |
51 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.8 | |
7.8 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.9 | |
8.9 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 3.2 | |
1.9 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.8 | |
1.4 |
Embodied Energy, MJ/kg | 24 | |
19 |
Embodied Water, L/kg | 52 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 110 | |
81 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 650 | |
230 to 1010 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 23 | |
21 to 28 |
Strength to Weight: Bending, points | 21 | |
20 to 24 |
Thermal Diffusivity, mm2/s | 10 | |
14 |
Thermal Shock Resistance, points | 19 | |
19 to 25 |
Alloy Composition
Boron (B), % | 0 to 0.0050 | |
0 |
Carbon (C), % | 0 to 0.18 | |
0.25 to 0.32 |
Chromium (Cr), % | 0 to 1.0 | |
0 |
Copper (Cu), % | 0 to 0.3 | |
0 |
Iron (Fe), % | 93.6 to 100 | |
97.2 to 98.6 |
Manganese (Mn), % | 0 to 1.7 | |
1.2 to 1.8 |
Molybdenum (Mo), % | 0 to 0.7 | |
0 |
Nickel (Ni), % | 0 to 1.5 | |
0 |
Niobium (Nb), % | 0 to 0.050 | |
0 |
Nitrogen (N), % | 0 to 0.015 | |
0 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.6 | |
0 to 0.6 |
Sulfur (S), % | 0 to 0.0080 | |
0 to 0.030 |
Titanium (Ti), % | 0 to 0.050 | |
0 |
Vanadium (V), % | 0 to 0.080 | |
0 |
Zirconium (Zr), % | 0 to 0.15 | |
0 |