MakeItFrom.com
Menu (ESC)

EN 1.8875 Steel vs. ISO-WD32250 Magnesium

EN 1.8875 steel belongs to the iron alloys classification, while ISO-WD32250 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8875 steel and the bottom bar is ISO-WD32250 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
45
Elongation at Break, % 19
4.5 to 8.6
Fatigue Strength, MPa 340
170 to 210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
17
Shear Strength, MPa 410
180 to 190
Tensile Strength: Ultimate (UTS), MPa 660
310 to 330
Tensile Strength: Yield (Proof), MPa 490
240 to 290

Thermal Properties

Latent Heat of Fusion, J/g 250
340
Maximum Temperature: Mechanical, °C 420
120
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
980
Thermal Conductivity, W/m-K 39
130
Thermal Expansion, µm/m-K 13
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
13
Density, g/cm3 7.9
1.8
Embodied Carbon, kg CO2/kg material 1.8
24
Embodied Energy, MJ/kg 24
160
Embodied Water, L/kg 52
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
14 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 650
630 to 930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
67
Strength to Weight: Axial, points 23
49 to 51
Strength to Weight: Bending, points 21
58 to 60
Thermal Diffusivity, mm2/s 10
72
Thermal Shock Resistance, points 19
19 to 20

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0
Chromium (Cr), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 93.6 to 100
0
Magnesium (Mg), % 0
94.9 to 97.1
Manganese (Mn), % 0 to 1.7
0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 1.5
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.0080
0
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.080
0
Zinc (Zn), % 0
2.5 to 4.0
Zirconium (Zr), % 0 to 0.15
0.45 to 0.8
Residuals, % 0
0 to 0.3