MakeItFrom.com
Menu (ESC)

EN 1.8875 Steel vs. S32760 Stainless Steel

Both EN 1.8875 steel and S32760 stainless steel are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8875 steel and the bottom bar is S32760 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
250
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 19
28
Fatigue Strength, MPa 340
450
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
80
Shear Strength, MPa 410
550
Tensile Strength: Ultimate (UTS), MPa 660
850
Tensile Strength: Yield (Proof), MPa 490
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 420
1100
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 39
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.2
22
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.8
4.1
Embodied Energy, MJ/kg 24
57
Embodied Water, L/kg 52
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 650
930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 23
30
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 10
4.0
Thermal Shock Resistance, points 19
23

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.18
0 to 0.030
Chromium (Cr), % 0 to 1.0
24 to 26
Copper (Cu), % 0 to 0.3
0.5 to 1.0
Iron (Fe), % 93.6 to 100
57.6 to 65.8
Manganese (Mn), % 0 to 1.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.7
3.0 to 4.0
Nickel (Ni), % 0 to 1.5
6.0 to 8.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0.2 to 0.3
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.0080
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0.5 to 1.0
Vanadium (V), % 0 to 0.080
0
Zirconium (Zr), % 0 to 0.15
0