MakeItFrom.com
Menu (ESC)

EN 1.8879 Steel vs. EN 1.5680 Steel

Both EN 1.8879 steel and EN 1.5680 steel are iron alloys. Both are furnished in the quenched and tempered condition. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.8879 steel and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
23
Fatigue Strength, MPa 460
310
Impact Strength: V-Notched Charpy, J 67
71
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 510
390
Tensile Strength: Ultimate (UTS), MPa 830
620
Tensile Strength: Yield (Proof), MPa 710
440

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 420
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
48
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
1.9
Embodied Energy, MJ/kg 26
26
Embodied Water, L/kg 54
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1320
510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
22
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 24
18

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.15
Chromium (Cr), % 0 to 1.5
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 91.9 to 100
93.4 to 95
Manganese (Mn), % 0 to 1.7
0.3 to 0.8
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
4.8 to 5.3
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0 to 0.050
Zirconium (Zr), % 0 to 0.15
0