MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. 324.0 Aluminum

EN 1.8880 steel belongs to the iron alloys classification, while 324.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is 324.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 16
3.0 to 4.0
Fatigue Strength, MPa 470
77 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 830
210 to 310
Tensile Strength: Yield (Proof), MPa 720
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
500
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1460
610
Melting Onset (Solidus), °C 1420
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
34
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.9
7.9
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 54
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
6.8 to 8.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
85 to 510
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 29
22 to 32
Strength to Weight: Bending, points 25
29 to 38
Thermal Diffusivity, mm2/s 11
62
Thermal Shock Resistance, points 24
9.7 to 14

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.2
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 1.5
0
Copper (Cu), % 0 to 0.3
0.4 to 0.6
Iron (Fe), % 91.9 to 100
0 to 1.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.7
0 to 0.5
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 0 to 2.5
0 to 0.3
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
7.0 to 8.0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.050
0 to 0.2
Vanadium (V), % 0 to 0.12
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.2