MakeItFrom.com
Menu (ESC)

EN 1.8880 Steel vs. AWS E70C-B2L

Both EN 1.8880 steel and AWS E70C-B2L are iron alloys. They have a very high 98% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.8880 steel and the bottom bar is AWS E70C-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 16
21
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 830
580
Tensile Strength: Yield (Proof), MPa 720
460

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 3.7
3.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
1.6
Embodied Energy, MJ/kg 26
22
Embodied Water, L/kg 54
54

Common Calculations

PREN (Pitting Resistance) 2.0
3.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1370
550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 24
17

Alloy Composition

Boron (B), % 0 to 0.0050
0
Carbon (C), % 0 to 0.2
0 to 0.050
Chromium (Cr), % 0 to 1.5
1.0 to 1.5
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 91.9 to 100
95.1 to 98
Manganese (Mn), % 0 to 1.7
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.7
0.4 to 0.65
Nickel (Ni), % 0 to 2.5
0 to 0.2
Niobium (Nb), % 0 to 0.060
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.8
0.25 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.12
0 to 0.030
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0
0 to 0.5